|| Jai Sri Gurudev|| ADICHUNCHANAGIRI UNIVERSITY BGS Institute of Technology

Scheme for Third Semester B.E Department of Mechanical Engineering

		Scheme for Third S	semester D.L.D	cpart	ment	UL IVIC	unam	cai Engine	cing			
SI.		Title of the Course	Teaching	Tea	ching l	Hours/v	week		Examina	ation		
No	Course Code	The of the course	Department	L	Т	Р	TL	Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits
1	22MAT31	Engineering Mathematics – III	Mathematics	3	2	0	4	3	50	50	100	4
2	22ME32	Strength of Materials	ME	2	2	0	4	3	50	50	100	4
3	22ME33	Engineering Thermodynamics	ME	2	2	0	4	3	50	50	100	4
4	22ME34	Manufacturing Process	ME	2	2	0	4	3	50	50	100	4
5	22MEIPC35	Electric Vehicles	ME	2	0	2	4	3	50	50	100	3
6	22MEL36	Material Testing Lab	ME	1	0	2	3	3	50	50	100	1
7	22MEL37	Manufacturing Technology Lab	ME	1	0	2	3	3	50	50	100	1
8	22AEC 38	SSD-I	HRD	2	0	0	2	2	50	50	100	
9	22 UHV39	Design Thinking	Humanities	2	0	0	2	2	50	50	100	
10	22DIPMAT40	Additional Mathematics-I	Mathematics	3	0	0	3		450	450	900	
		TOTAL C	CREDITS & CO	NTAC	ст но	URS	31					21
		Т	OTAL CREDIT	S (I+1	I+III	Sem)			20+20+21			61
		Scheme for IV Seme	ster B.E Depar	tment	of M	echan	ical E	Ingineering	ſ			
SI.	~ ~ ~	Title of the Course	Teaching	Tea	ching l	Hours/v	week		Examina		-	
No	Course Code		Department	L	Т	Р	TL	Duration in Hours	CIE Marks	SEE Marks	Total Marks	Credits
1	22MAT41	Engineering Mathematics – IV	Mathematics	4	1	0	5	3	50	50	100	4
2	22ME42	Measurements and Metallurgy	ME	2	2	0	4	3	50	50	100	4
3	22ME43	Theory of Machines	ME	2	2	0	4	3	50	50	100	4
4	22ME44	Automation and Robotics	ME	2	2	0	4	3	50	50	100	4
5	22MEIPC45	CAMD	ME	2	0	2	3	3	50	50	100	3
6	22MEL46	M&M Lab	ME	1	0	2	3	3	50	50	100	1
7	22MEL47	Machine Shop Practice	ME	1	0	2	3	3	50	50	100	1
8	22AEC 48	SSD-II	HRD	0	0	2	2	1	50	50	100	
9	22 UHV49	CIP	Humanities	0		2	2	1	50	50	100	

0	ZZALC 40	11-000	IIKD	0	0	4	4	1	50	50	100	
9	22 UHV49	CIP	Humanities	0		2	2	1	50	50	100	
10	22DIPMAT50	Additional Mathematics-II	Mathematics	3	0	0	3		450	450	900	
TOTAL CREDITS & CONTACT HOURS												21
TOTAL CREDITS (I+II+III+IV Sem)								20	0+20+21+2	21		82

Minor Degree- One Subject in each semester of 3 credits each

SI.No	l Sem	Cr	II Sem	Cr	III Sem	Cr	IV Sem	Cr	V Sem	Cr	VI Sem	Cr	VII Sem	Cr	VIII Sem	Cr
1	22MAT11	4	22MAT21	4	22MAT31	4	22MAT41	4	22ME51	4	22ME61	4	22ME71	4	22ME81	3
2	22PHY12	3	22CHE22	3	22ME32	4	22ME42	4	22ME52	4	22ME62	4	22ME72	4	22ME82X	3
3	22CVE13	3	22EME23	3	22ME33	4	22ME43	4	22ME53X	4	22ME63X	4	22ME73X	4	22MEINT83	5
4	22ELE14	3	22ELN24	3	22ME34	4	22ME44	4	22ME54X	4	22ME64X	4	22ME74X	4	22MEPW84	10
5	22CAED15	3	22PCD25	3	22ME35	3	22ME45	3	22MEOE55X	3	22MEOE65X	3	22MEOE75X	3		
6	22PHYL16	2	22CHEL26	2	22MEL36	1	22MEL46	1	22MEL56	1	22MEL66	1	22MEL76	1		
7	22EEL17	2	22PCDL27	2	22MEL37	1	22MEL47	1	22MEL57	1	22MEL67	1	22MEL77	1		
8	22AEC 18	1	22AEC 28	1	22AEC38		22 AEC 48		22 AEC 58		22 AEC 68					
9	22 DS19	1	22 BIO29	1	22UHV39		22UHV49		22UHV59		22UHV69					
					NCMC		NCMC		NCMC		NCMC					
Total	Credits-166	20		20		21		21		21		21		21		21

Course Code	22ME32	Course Title	Strength of materials	Semester	3		
Credits	4	$L - T - P - TL^*$	4-1-0-5	Teaching Hrs	56		
Total Marks	100	CIE*	50	SEE*	50		
CIE –	Continuous Inter	l; P – Practical; TL – Total; rnal Evaluation; SEE – Semest mpart basic knowledge on evalua		als for physical structuresunder static	Teaching Hr		
		Modul	le-1				
structural steel and	Non-ferrous mate	1	les of superposition, To	in, Hook's Law, Stress Strain Diagram for otal elongation of tapering bars of circular nember.			
Composite section Thermal stresses ir			strain, Elastic constant	ts, relationship among elastic constants,	12		
		Module-2					
Compound Stresses: Introduction. Stress components on inclined planes. General two-dimensional stress system, Principal planes and stresses, Problems on principle plane stresses. Mohr's circle for biaxial stresses. Thin and Thick Cylinders: Introduction. Thin and thick cylinders subjected to pressure. Hoop stresses and longitudinal stresses.							
Problems on chang	e in length, diame	ter and volume. Lame's equation	ns. Problems on thickcyl	linder.			

Module-3	
Bending Moment and Shear Force in Beams: Introduction, Types of beams loadings and supports. Shearing force in beam. Bending moment, Sign convention. Relationship between loading shear force and bending moment. Expression for shear and bending moment equations.	
SFD and BMD for cantilever beams, simply supported beams & overhanging beams considering point load, UDL, UVL and Couple.	12
Module-4	
Bending Stress and Shear Stress in Beams: Introduction, Bending stress in beam. Assumptions in simple bending theory. Pure bending derivation of Flexure equation. Modulus of rupture, Section modulus, Flexural rigidity. Assumptions in theory of shear stresses in beams, Expression for horizontal shear stress in beam, Shear stress diagram for solid rectangular section and circular section. Deflection of Beams: Introduction, Elastic curve-Derivation of differential equation of deflection curve. Signconvention, slope and deflection standard loading using Macaulay's method, Problems on simply supported and overhanging beams to point load, UDL & Couple.	12
Module-5	
Torsion of Circular Shafts: Introduction. Pure torsion- General torsion equation. Strength and stiffness, Torsional rigidity, Torsional flexibility and polar modulus. Power transmitted by solid shaft. Power transmitted by hollow shaft.	
Elastic stability of columns: Introduction. Euler's theory on columns. Effective length, slenderness ratio. Short and long columns, Radius of gyration, Buckling load. Assumptions, derivations of Euler's Buckling load for different end conditions. Limitations of Euler's theory, Rankine's formula, related problems.	12

Activity/Assignment	Details
Activity 1:	CAM Module and Gear profile module generation using MechAnalyser (MechAnalyzer isa 3D model
	based open-source software developed by IIT Delhi) (<u>http://www.roboanalyzer.com/mechanalyzer.html</u>)
Activity 2:	Conduct experiments to determine equilibrium speed, sensitiveness, power and effort of centrifugalgovernors in design lab.
	the end of the course the student shall be able to
	concepts and principles of stress analysis on members subjected to uniaxial load.
	e, bending moment diagrams subjected to different types of loads
	nding, shear stresses & deflection in beamsCO4: Evaluate the torsional moment of shafts & elastic stability of columns.
Question paper patter	rn:
• The question pa	aper will have ten full questions carrying equal marks.
	on will be for 20 marks.
-	vo full questions (with a maximum of four sub- questions) from each module.
	on will have sub- question covering all the topics under a module.
1	ill have to answer five full questions, selecting one full question from each module.
TEXT BOOKS:	
1. James G.Gere, Mech	nanics of Materials, 5th Edition, 2004. Thomson Publishers. ISBN-0534417930
2. S.Ramamrutham, R. REFERENCE BOOF	. Narayanan, <i>Strength of Materials</i> , Dhanphatrai publishing Co.Ltd.2003.ISBN-818743354X, 978818743354 XS:
1. Egor.P. Popov, Eng	ineering Mechanics of solids, Pearson education India, 2 nd edition, 1998. ISBN-8120321073, 9788120321076
	s by S. S. Bhavikatti, Vikas publications House – Pvt. Ltd., Third edition. ussell Jhonstan, <i>Mechanics of Materials</i> , TMH 3 rd Edition, 2003. ISBN – 0070535108, 97800705351071.

Course Code	22ME33	Course Title	Engineering Thermodynamics	Semester	3		
Credits	4	$L - T - P - TL^*$	4-0-0-4	Teaching Hrs	56		
Total Marks	100	CIE*	50	SEE*	50		
	,	utorial; P – Practical; TL – luation; SEE – Semester En	·		1		
Course Learning Objection	ves: To impart bas	sic knowledge on evaluation	response of materials for phy	sical structuresunder static	Teaching Hr		
Module-1 Fundamental Concepts of Thermodynamics: Introduction, scope, microscopic and macroscopic approaches. Types of System and types of Properties. Thermodynamic state, path and process and its types, thermodynamic equilibrium, and its types,							
diathermal wall, zeroth law Work and Heat: Definition through p-v diagrams. Heat-							
		Module-2					
First Law of Thermodynamics: First law for cyclic and non-cyclic processes, concept of total energy and energy as the property of a system, variousmodes of energy, internal energy and enthalpy. Steady Flow Energy Equation (SFEE), Application of steady flow process for compressor, Turbine, and Nozzle. Numericals							

Module-3	
Second Law of Thermodynamics: Direct and reversed heat engine (Refrigerator and heat pump), thermal efficiency and COP,	
Kelvin-Planck and Clausius statements, Equivalence of Kelvin-Planck and Clausius statements. Definition of perpetual motion	12
machines of I & II kind, Reversible and irreversible processes, factors that make a process irreversible, reversible heat engine.	
Numerical Problems.	
Entropy: Limitations of II law of thermodynamics Clausius inequality; statement, proof, path. Entropy: definition, principle of	
increase of entropy, entropy as a quantitative test for irreversibility, calculation of entropy in various quasi- static processes using	
Tds relations. Numericals.	
Module-4	
Refrigeration: Introduction to refrigeration, and classification. Refrigerating effect, ton of refrigeration and COP, Desirable	
properties of refrigerant, Bell Coleman cycle, and analysis of ideal vapor compression refrigerator. Numericals.	
Air-conditioning: Introduction- Properties of atmospheric air- Psychometric properties- Psychometric chart-	10
Psychometric processes and their representation on Psychometric chart- Types of air conditioning systems – Numericals.	10
Module-5	
Air Standard Cycles: Air standard assumptions - Otto cycle - Diesel and Dual cycles - Comparison of Otto, Dieseland Dual combustion cycles. Sterling cycles - Numericals.	
Vapor Power Cycles: Introduction to vapor power cycle, Carnot vapor power cycle, Simple Rankin cycle. Rankinreheat and regenerative cycles- Numericals.	12
Course outcomes: At the end of the course students will be able to:	
CO1: Apply the basic concepts of thermodynamics on different thermodynamic processes and solve the problems withwork and heat interactions.	
CO2: Apply the concepts of laws of thermodynamics and entropy for the analysis of thermodynamic processes and thermal systems.	
CO3: Evaluate the performance of refrigeration and air-conditioning systems and finding their application in theEngineering field.	
CO4: Apply the knowledge of applied thermodynamics to comprehend and analyze gas power cycles and vapor powercycles.	

Text Books:	
1. Basic and applied thermodynamics: P K Nag, Tata Mc Graw Hill Co. Ltd, New Delhi	
2. Thermodynamics- An engineering approach: Yunus A Cengel and Michael Boles, Tata McGraw Hill Publishing Co.Ltd, New	
Delhi	
Reference Books:1. Thermal engineering By R K Rajput, Laxmi publication Pvt, Ltd, New Delhi.	
2. Thermodynamics : S C Gupta, Pearson Education PP (Singapore) Pvt. Ltd, Delhi.	
3. Thermodynamics: Basic and Applied: V Ganesan, McGraw Hill Education (India) Pvt. Ltd, Chennai.	

Course Code	Course Code 22ME34 Course Title Manufacturing Process Semester					
Credits	its 3 $L-T-P-TL^*$ $3-0-0-3$ Teaching Hrs				42	
Total Marks	100	CIE*	50	SEE*	50	
	,	orial; P – Practical; TL – T ation; SEE – Semester End		1	1	
Course Learning Objective	es:				Teaching Hr	
1	t of selection of a to good foundry	ppropriate production proces practices and product des processes.	1 11			
		Module-1				
Manufacturing process: Intro Introduction, steps involved	Applications.Casting:	08				
Pattern making: Functions of pattern.						
Mould making: Types of m important factors in core desig						

Module-2	
Gating system: Concept of gating system, different types of gating systems, gating system design, risering design,8umerical on gating and risering design.Defects in casting: Introduction causes and remedies.	
Solidification: Solidification of pure metal and alloy, Mechanisms of solidification, types of nucleation, grain structures. Progressive and directional solidification, solidification variables. Methods of achieving directional solidification.	08
Casting defects: shrinkage and porosity Self study component: Solidification defects	
Module-3	
Special casting processes: Shell molding, investment casting, Gravity diecasting, Pressure die casting, Centrifugalcasting, Slush casting, Continuous casting, Injectionmolding. CO ₂ moulding.	08
Melting Furnaces: Classification, constructional features and working principleof coke fired and Gas fired pit furnace, Resistance furnace, Electric arc furnace, Cupola furnace.	
Self study component: Application of furnace	
Module-4	
Unconventional machining: Classification, USM, EDM, ECM, LBM, AJMtechniques.Lapping and Honing Machines:	09
Lapping-Principle of Lapping-Lapping methods- Advantages and limitations of lapping	
Honing- Principle of honing- Types of honing machines-Advantages, limitations and application of honing	
Module-5	
Welding: Classification of welding, TIG & MIG Welding, FSMAW, oxyacetylene welding, types of flamesand gas welding type characteristics Special welding technique: Laser Beam Welding, Explosive welding, Resistance welding, Thermit welding.	09
Self study component: Inspection method	

Course outcomes: By the end of the course, the student shall be able to know	
CO1: Importance of casting process, steps involved in casting, patterns, binders, additives andmolding machines.	
CO2: Describe the types of cores, types of metallic mold castings and melting furnaces.CO3: Develop agating system for a given metal casting component	
CO4: Discuss the basic principles of different welding processes and their applications	
Question paper pattern:	
 The question paper will have ten full questions carrying equal marks. Each full question will be for 20 marks. There will be two full questions (with a maximum of three sub- questions) from eachmodule. Each full question will have sub- question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module.	
Textbooks:	
 Foundry Technology, O.P. Khanna, Dhanpatrai publications (P)-2003 reprint. Manufacturing Technology: Foundry, Forming and Welding, P N Rao, 2 nd Edition TataMcGraw-Hillpublishing company Limited. Reference Books: 	
 S.K. HajraChoudhury (2001), Elements of Workshop Technology, Vol-I, MediaPromoters Pvt Ltd., Mumbai. S. Kalpakjian and S.R. Schmid, "Manufacturing Engineering and Technology", 7 thEdition, Prentice-Hall, 2013 Roy A. Lindberg (2004), Processes and Materials of Manufacture, 4th Edition, Prentice-Hall of India, NewDelhi. Banga T.R; and Agrawal R.L, "Foundry Engineering", Khanna Publishers, 1992. 	

Course Code	22MEIPC35	Course Title	ELECTRIC VEHICLES	Semester	ш	
Credits	3	L-T-P-TL*	3-1-0-4	Teaching Hrs.	40	
Total Marks	100	CIE*	50	SEE*	50	
		NOTE:L–Lecture; T– valuation; SEE–Seme	Tutorial; P–Practical; TL–Tot ster End Examination	al; CIE–Continuous Intern	al	
Course Learning Ob	jectives:				Teaching H	Ir.
The course will enab	le the students	to				
1. To understand the	concept of elect	ric vehicles				
 To understand the To understand the 	-					
3. To study about fu	1 2					
		of energy storage system	1.			
5. To know the conce	• •					
		Modu			0	
Introduction to Electric Vehicle: History of electric vehicles, social and environmental importance of electric vehicles,					8	
Types of Electric Vehicle and components, Electrical vehicles Indian & International standards & test. Batteries - overviewand its						
types. Battery plug-in and life. Charging – Methods and Standards, Alternate charging sources – Wireless & Solar.						
Module-2 Hybrid Vehicles: Introduction, Hybrid Electric vehicles classification – Micro, Mild, Full, Plug-in, EV, Hybrid layout & Architecture					itecture	
	-		mponents, Comparison of ICE v/s		8	
Vehicle v/s Hybrid Electr		· ·				

Module-3	
Fuel Cells for Electric vehicles: Introduction, Fuel cell types & components, Operation principles, Energy Consumption, Fuel cell	8
Characteristics – Efficiency, Durability, Specific power, Factors affecting, Power design of fuel Cell Vehicle and	
freeze capacity, Fuel Cell vehicle standard & test.	
Module-4	8
Energy storage system: Batteries: Lead Acid Battery, Nickel based batteries, Sodium based batteries, Lithium basedbatteries –	0
Li-ion & Li-poly, Metal Air Battery, Zinc Chloride battery; Ultra capacitors; Flywheel Energy Storage System; Hydraulic Energy	
Storage System, Comparison of different Energy Storage System. Battery performance,	
Regenerative Braking System.	
Module-5 Battery Pack and Battery Management System: Battery pack design, Battery Management System, Requirement of Battery	8
Monitoring, Battery State of Charge Estimation methods, thermal control, and protection interface, SOC Estimation, Energy&	
Power estimation, Battery thermal management system, Battery Pack Safety, Battery Standards & Test.	
Course Outcomes:	
At the end of the course, the student will be able to:	
CO 1. Describe about working principle of electric and hybrid vehicles.	
CO 2. Illustrate the various types and working principle of fuel cells.	
CO 3. Discuss about the different types of energy storage system.	
CO 4: Apply the concepts of battery management system.	

Suggested Learning Resources:

Books:

- 1. Electric and Hybrid Vehicles, Tom Denton, Taylor & Francis, 2020.
- 2. Electric and Hybrid Vehicles: Design and fundamentals, Eqbal Husain, CSR press 3rd edition., 2021
- 3. Hybrid, Electric and Fuel Cell Vehicles, Jack Erjavec and Jeff Arias, Cengage Learning, 2012.
- 4. Guangjin Zhao, "Reuse and Recycling of Lithium-Ion Power Batteries", John Wiley & Sons. 2017.

References:

Battery Management system for future electric vehicles, Bathala Neeraj, Dr.G. Raghvendra, Vijay Dattatray Chudahri, Scientific

International Publication House 1st Ed., 2022.

Course Code	22MEL36A	Course Title	Materials Testing Lab	Semester	III
Credits	2	L - T - P - TL*	1-0-2-3	Teaching Hrs	42
Total Marks	100	CIE*	50	SEE*	50
		E:L–Lecture; T– Tutorial; I	· · · ·	–Continuous Internal	
	Evalua	tion; SEE–Semester End Ex	kamination		
Course Learning Ob	jectives: This course w	ill enable students to;			Teaching Hr.
 To find impact To prepare the To study the wear List of Experiments 1. To determine the te 2. To determine the co 3. To determine the sh 4. To determine the m 5. To determine the B 	et strength of the given ma e specimen for metallogra & density characteristics nsile strength using Univer ompression strength using hear strength using Univer odulus of rigidity using ending strength using Uni	phic examination (Demonstration of the given specimen (Demonstration ersal Testing Machine. Universal Testing Machine. sal Testing Machine. Torsion Tester. versal Testing Machine.	·		
6. To determine the in7. To determine the in	pact strength of a specim	en by Izod impact method. en by Charpy impact method. ers's Hardness Number using ha	rdness testing equipment.		8
		ferrous, non-ferrous and composite etching of ferrous metal specime			
Demonstration of determ	nination of density of Meta	als.			

Course outcomes: By the end of the course the student shall be able to

CO1: Determine tensile, compressive properties of the given material using UTM.

CO2: Determine torsional ,bending and Shear properties of the given material using UTM.CO3: Determine impact strength of the given material

CO4: Determine hardness of the given material & impact strength of the given materialCO5: Prepare the document based on the experiment/test conducted.

Question paper pattern:

The students will have to conduct ONE Experiment Activity (Demonstration only)

Scheme of Examination:

ONE question: 80 Marks

Viva -Voice: 20 Marks Total: 100 Marks (To be reduced to 50 Marks)

CourseCode	22MEL37	Course Title	Manufacturing Technology Lab	Semester	Ш
Credits	2	L – T – P –TL*	1-0-2-3	Teaching Period	42 Hours
ToatalMark	100	CIE	50	SEE	50
		E:L–Lecture; T– Tutorial; P- tion; SEE–Semester End Exa	· · · · ·	E–Continuous Internal	
 To introduce the sample, coreha To bring in the To give studen pattern. To give studen bending operation 	l introduce desirable prope he experimental procedure ordness & mold hardness. effect of clay & water con ts hands on practice in pre- nts hands on practice in pre-	erties of molding sand and establi in determining the GFN, Permea itent on the various properties of r paring the sand moulds (Cope & I eparing forging models using ope	bility, Strength ofmold, moist nolding sand. Drag box) usingsingle piece, s	ture & clay content in sand	Teaching Hr
Preparation of sa a. Compres b. Permeab c. Sieve an d. Determin	ling Sand and Core San and specimens and conduct ssion and Shear test using U	tion of the following tests: Universal Sand Testing Machine. s number of base sand			14

PART – B				
 2. Foundry Practice a. Preparation of moulds with or without patterns.(Single piecepattern and Split pin pattern) 				
PART – C				
3. Forging Practice:				
Preparing minimum three forged models involving upsetting, drawing and bending operations.				
PART – 4				
Visit to Foundry Industries				
Question paper pattern:				
 The question paper will have ten full questions carrying equal marks. Each full question will be for 20 marks. There will be two full questions (with a maximum of four sub- questions) from each module. Each full question will have sub- question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. 				
Scheme of Examination:				
ONE question from part -A: 30 Marks				
ONE question from part –B/Part-C: 50 Marks				
Viva -Voice: 20 Marks Total: 100 Marks (To Be reduced to 60 Marks)				

CourseCode	22ME42	Course Title	Measurements and Metallurgy	Semester	IV
Credits	3	L - T - P - TL	3-0-0-3	TeachingHrs	42
Total Marks	100	SEE	50 Marks	CIE	50 Mark
Course Learning Objectives: 1. To impart the knowledge of importance of standards & conversion.					
 To impart the knowledge of importance of standards & conversion. To introduce the fundamental concepts & derive the relations for the design of gauges, types of gauges, concepts involving 					
3. To incor	1	rements, ge in various class of materials and e heat treatment process required	11		
Module-1 Linear and Angular measurement					
Linear and Angular measurement Definition, objectives and concept of metrology, Classification of standards, MaterialStandard, Wavelength Standards, Line and End standards, calibration of End bars (Numerical). Slip gauges-Indian standards on slip gauge, wringing of slip gauge, types of slip gauges, Numerical on building of slip gauges (M87,M112),Sine Bar and Sine center, Bevel protractor, Numerical on angle gauge.					

Module-2 System of Limits, Fits, Tolerence and Guaging	
Specification in assembly, Principle of interchangeability and selective assembly, limits of size, Indian standards, concept of limits	
of size and tolerances, definition of fits, hole basis system, shaft basis system, types of fitsand their designation (IS 919-1963).	08
Classification of gauges, brief concept ofdesign of gauges (Taylor's principles), Numerical on design of Gauges.	
Module-3	
Measurement systems and Comparators	
Block diagram of generalized measurement system, definitions and concept of accuracy, precision, calibration, threshold, sensitivity, hysteresis, repeatability, linearity, loading effect, Errors in measurement, classification of errors.	
Functional requirements of comparators, classification, mechanical - dial indicator, Johnson Mikrokator, sigma comparators, Electrical Comparator, LVDT, Pneumatic comparator -back pressure, solex comparators and optical Comparators-Zeiss ultraoptimeter	08
Module-4	
Solidification and Phase Diagrams	
Mechanism of solidification, homogeneous and heterogeneous solidification, Hume Rothary rules, substitution and interstitial solid solutions.	08
Construction of phase diagram for binary systems, types of phase diagrams, Gibbs phase rule. lever rule.	
Iron carbon equilibrium diagram and invariant reactions. Numerical on lever rule.	
Module-5 Heat Treatment of Metals and Alloys	
CCT and TTT diagrams, heat treatment of metals: Annealing method and itstypes. Normalizing, hardening, tempering, mar	
tempering, austempering.	08
Hardenability-Jominy-end quench test	
surface hardening methods:carburizing, cyaniding, nitriding, flame hardening and induction hardening, age hardening of aluminium-copper alloys., Radius of gyration, Buckling load. Assumptions, derivations of Euler's Buckling load for different end conditions. Limitations of Euler's theory, Rankine's formula, related problems.	

Course outcomes: By the end of the course students shall be able toCO1: Distinguish between linear and angular	
measurements	
CO2: Design of limit gauges for hole and shaft.	
CO3: Illustrate the mechanism of solidification for various alloys	
CO4: Describe various types of heat treatment process require for strengthening of materials	
Question paper pattern:	
•The question paper will have ten full questions carrying equal marks.	
Each full question will be for 20 marks.There will be two full questions (with a maximum of three sub- questions) from each module.	
•Each full question will have sub- question covering all the topics under a module.	
The students will have to answer five full questions, selecting one full question from eachmodule.	
Textbooks:	
 R.K. Jain, Engineering Metrology, Khanna Publishers, 1994. I.C.Gupta, Engineering MetrologyDhanpatrai publications. 	
 James F Shackleford. Madanapalli K Muralidhara, Material science for Engineers, Sixthedition, Pearson Publications - 2007 	
4. Smith, Foundations of Materials Science and Engineering, 4th Edition McGrawHill,2009.	
Reference Books:	
1. Beckwith Marangoni and Lienhard, Mechanical Measurements, Pearson Education, 6th Ed., 2006.	
 Alan Cottrell An Introduction to Metallurgy Universities Press IndiaOrientalLongman Pvt. Ltd., 1974. W.C.Richards Engineering Materials Science, PHI, 1965 	

Course Code	22ME43	Course Title	Theory of Machines	Semester	IV
Credits	4	$L - T - P - TL^*$	4-1-0-5	Teaching Hrs	56
Total Marks	100	CIE*	50	SEE*	50
	,	ll; P – Practical; TL – Total; mal Evaluation; SEE – Semest	er End Examination		
Course Learning	g Objectives: This	course will enable students to;			Teaching Hr
To undersTo teach the	he kinematics of ca	tals of gear teeth, types of gear, g nm- follower motion. tals of TM diagram and governo Module-1		gements.	
Definitions . Introd	Juction to Link K	inematic Pairs Degrees of freed	lom Kinematic chain M	Mechanism, Inversion, Machine,	
	,	, U	· · · · · · · · · · · · · · · · · · ·	s inversions, Double slider chain	
		with three lower pairs, Quick retu	•		
tatic Force Analysis: Introduction, Static equilibrium, Equilibrium of two and three force members. Member with two orces and torque, Free-body diagrams, Static force analysis of simple mechanisms.					12
traight Line Mecl	nanism. Elliptical (n Mechanism, Whitwort	ht Line Mechanism, Peaucellier th Mechanism, Crank and Slotted	

Module-2	
Velocity and Acceleration Analysis of Mechanisms (Graphical Method): Velocity and acceleration analysis of four bar mechanism, slider crank mechanism. Mechanism illustrating Corioli's component of acceleration. Angular velocity and angular acceleration of links, velocity of rubbing.	12
Fly wheel : Engine output torque, turning moment diagrams of I.C. Engines and multi cylinderEngine, Fluctuation of Energy, Fly wheel design for I.C. Engine and size for punching press.	
Module-3 Dynamic Force Analysis: Inertia force, inertia torque, Determination of inertia force- engine mechanism, Engine force analysis.	
Balancing of Rotating Masses: Static Balancing, Dynamic Balancing of rotating masses-effect of single rotating mass, effect of two rotating masses not in the same plane of rotation; several masses rotating in a single and different transverse plane, Graphical and analytical methods.	12
Module-4	
 Spur Gears: Gear terminology, law of gearing, path of contact, arc of contact, contact ratio of spur gear. Interference in involute gears, methods of avoiding interference, condition and expressions for minimum number of teeth to avoid interference., Back lash, comparison of involute & cycloidal teeth. Problems on Gears, Gear Trains: Simple gear trains, compound gear trains. Epicyclic gear trains: Algebraic and tabular methods of finding velocity ratio of epicyclic gear trains, torque calculation in epicyclic gear trains. 	12
Module-5 Cams: Types of cams, Types of followers, Displacement - constant velocity, Simple Harmonic Motion, Uniform Acceleration & Retardation Motion, Cycloidal motion. Cam with knife edge follower and roller follower.	
 Governors: Principle of Governors, Types, force analysis of Porter, Proell and Hartnell governors, Controllingforce, stability, sensitiveness, effort and power of governors, governor characteristics. Activity 1: CAM Module and Gear profile module generation using MechAnalyser (MechAnalyzer isa 3D modelbased 	12

open-source software developed by IIT Delhi) (<u>http://www.roboanalyzer.com/mechanalyzer.html</u>) Activity 2: Conduct experiments to determine equilibrium speed, sensitiveness, power and effort ofcentrifugal governors in design lab.	
 Course outcomes: By the end of the course the student shall be able to CO1: Analyze various mechanisms through degrees of freedom and carry out graphical analysis of static and dynamic forces onmechanisms and machines CO2: Analyse the performance of gear trains and spur gear for power transmission. CO3: Draw turning moment diagrams of mechanisms and analyze characteristics of flywheels and governors.CO4: Draw various types of cams and follower based on motion. CO5: Resolve the rotating balancing problems using graphical and analytical method. 	
Question paper pattern:	
 The question paper will have ten full questions carrying equal marks. Each full question will be for 20 marks. There will be two full questions (with a maximum of four sub- questions) from each module. Each full question will have sub- question covering all the topics under a module. The students will have to answer five full questions, selecting one full question from each module. 	
TEXT BOOKS:	
1. Thomas Bevan., Theory of Machines, C.B.S Publishers, 2005. ISBN-8123908741.	
2. Rattan S.S., Theory of Machines, TMH, Third Edition, 2011. ISBN-13:978-0-07-0144774.	
REFERENCE BOOKS:	
 Shigley. J. V. and Uickers, J. Theory of Machines & Mechanisms TMH, 6th Edition, 2003. ISBN-04718-0237- 9, ISBN-019515598X. Theory of Machines by Sadhu Singh, Pearson Education (Singapore) Pvt. Ltd. 2nd edition 2007. Mechanism and Machine Theory, A.G.Ambekar, PHI, 2007 	

Course Code	22ME44	Course Title	Automation and Robotics	Semester	IV	
Credits	4	L – T – P – TL*	3-1-0-4	Teaching Hrs	56	
Total Marks	100	CIE*	50	SEE*	50	
Course Loomi	obiosti usse Thi	*NOTE: L – Lecture; T – Tut CIE – Continuous Internal Ev s course will enable students to;				
 Develop know Exposed to th Develop skil 	wledge in different e basics of Sensors ls in knowing autor	types of robots and their working and Control system. nation and material handling syst try and AID Technologies.			Teaching Hrs	
Module – 1 Introduction to Robotics: Definition and origin of robotics, different types of robotics, Various generations of robots, Degrees of freedom, Asimov's laws of robotics, Robot applications. Sensors; Sensors, Specifications of sensor, Sensors for common engineering measurements – Proximity, Tactile, Range, Miscellaneous Sensor etc.; Analog to digital converters, Digital to analog converters,						
		Module – 2				
Micro machines: Micro machines in robotics, machine vision, ranging, laser, acoustic, magnetic, fiber optic. Control Systems; Open loop and Closed loop control system, Controllers, Types of controllers, Control systemanalysis, Encoders, Resolvers.						
Moninulators (rinnara Constance	Module - 3	rs. Types of and officiars	Machanical Vacuum		
Adhesive gripper Robot Actuator	Manipulators, Grippers: Construction of manipulators, End effectors, Types of end effectors, Mechanical, Vacuum, Adhesive grippers. General considerations in gripper selection. Robot Actuators: Pneumatic and Hydraulic actuators; Electric motors including DC Motor, AC Motor, Servo and Stepper motors; Solenoids and relays, Power Transmission systems					

		Module – 4		1
Intro	duction to Automatio	n		
Basic	elements of an automa			
	s discrete manufacturir	12		
	strial Automation: Lis			
Auto	mated Systems. Identify	y Safety in Industrial Automation		
		Module - 5		
		l Handling Systems, Principles and Design Consideration, Advantages, Applications	10	
	rialTransport Systems,		10	
	0	s: Automatic Identification Methods, Categories of AIDC, Bar code technology, Radio		
Irequ	ency identification,			
SI.	Торіс	Activity link		
NO	ropie			
1.	Robot	https://www.youtube.com/watch?v=McbyQNLZ6nQ	-	
1.	Robot			
2.	AID Technology	https://www.youtube.com/watch?v=n5qkGxHQRUQ		
			_	
3	Automation	https://www.youtube.com/watch?v=nmuGlM3fC84		
Cour	se outcomes: After a s	uccessful completion of the course, the student will be	-	
able t	o:CO1:Describe anator	ny of robot.		
		n system and control system CO3:Discuss about Automation and AID Technologies		
CO4:	Describe Material Hand	lling Systems & Storage system.		
01105	tion paper pattern:			
Ques	tion paper pattern.			
•	The question paper w	ill have ten full questions carrying equal marks.		
•	Each full question wil			
٠	There will be two full	questions (with a maximum of four sub- questions) from each module.		
٠		have sub- question covering all the topics under a module.		
The s	tudents will have to ans	wer five full questions, selecting one full question from each module.		

TEXT BOOKS:

- 1. Mikell P Groover. Weiss G.M., Nagel R.N., Odraj N.G., Industrial Robotics, McGraw-Hill, Singapore, 1996.
- 2. Ghosh, Control in Robotics and Automation: Sensor Based Integration, Allied 4. Publishers, Chennai, 1998.

REFERENCE BOOKS

- 1. Deb.S.R., Robotics technology and flexible Automation, John Wiley, USA 1992.
- 2. Asfahl C.R., Robots and manufacturing Automation, John Wiley, USA 1992.
- 3. Klafter R.D., Chimielewski T.A., Negin M., Robotic Engineering An integrated approach, Prentice Hall of India, New Delhi, 1994.
- 4. Mc Kerrow P.J. Introduction to Robotics, Addison Wesley, USA, 1991. 5. Issac Asimov I Robot, Ballantine Books, New York, 1986.

CourseCode	22MEIPC45	Course Title	Computer Aided Machine Drawing	Semester		IV
Credits	3	L – T – P –TL*	2-0-3-5	Teaching Hrs		48
Total Marks	100	CIE*	50	SEE*		50
			– Tutorial; P – Practical; T al Evaluation; SEE – Sem			
Course Learning Obje	ctives: This course	will enable students to;				Teaching Hr
To Sketch orth	nographic drawing o	f simple machine parts and t f different fasteners and rive	ets.			
-	olid modeling skills	to produce assembly drawing	gs of mechanical components.			
(Noproblems on axis Orthographic View	s inclinations, sphe s: Conversion of p	eres and hollow solids). The actorial views into orthograp	ahedron, Cone and Cylinder rue shape of sections. bhic projections of simple mac the drawings), Line conventio	hine parts with and without	ses	8
Module-2			6,,,			
Thread Forms: Thread terminology, sectional view of threads. ISO Metric (Internal & External), BSW (Internal & External), squareand Acme threads, Buttress thread, Sellers thread, American Standard thread.					5	
Module-3 Part – B						
Fasteners: Hexagonal headed bolt and nut with washer (assembly), square headed bolt and nut with washer (assembly) simpleassembly using stud bolts with nut and lock nut.					5	
Module-4 Riveted Joints: Single and Double riveted lap joints, butt joints with single/double cover straps (chain and Zigzag, using snap headrivets).					5	

Module-5 Part – C Assembly Drawings:	
Solids of Protrusion, Assembly drawing of following machine parts (3D parts to be created and assemble and then getting 2D drawingwith required views, including part drawing).	25
 Screw Jack Plummer Block (Pedestal Bearing) Petrol Engine piston I.C. Engine connecting rod Machine Vice Stuffing Box 	
Course outcomes: By the end of the course student shall be able to CO1: Sketch detailed orthographic drawings of simple machine parts and threadsCO2: Construct hexagonal, square headed bolts and nuts.	
CO3:Construct single and double riveted lap joint, butt joints with single/double cover straps	
CO4: Create solid assembly models of screw jack Plummer Block (Pedestal Bearing), Petrol Engine piston, machine-vice, I.C. engine connecting rod, StuffingBox. Question paper pattern: The students will have to answer questions, selecting one full question from each Part.	
Scheme of Examination:	
ONE question from part -A: 15 Marks ONE question from part -B: 15 Marks ONE question from part -C: 70 Marks	
Total: 100 Marks (To be reduced to 50 marks)	

Textbooks:

1. Machine Drawing by K. R. Gopalkrishna,; 2014, Publisher. Subhas Stores, ISBN: 4567142527

2. N.D. Bhat and V.M.Panchal, "Machine Drawing", Charotar Publishing House, 46th Edition, 2011, ISBN: 9789380358390

3. Tryambaka Murthy, "Machine Drawing", CBS Publications, 2nd Edition, 2008, ISBN: 9788123916590

Reference Books:

1. Machine Drawing by P.S.Gill, S.K.Kataria and Sons, Seventeenth Revised Edition, 2008.

2. Machine Drawing by N.D. Bhatt and V.M. Panchal, 48th edition (2013); Charotar Publishing House Pvt. Ltd., ISBN : 978-93-80358-69-7

Machine Drawing – N. Sidheshwar, P. Kannaiah, V.V.S. Sastry, McGraw Hill Edition 48th ISBN 10: 007460337X/ ISBN 13: 9780074603376

Course Code	22MEL46	Course Title	M&M Lab	Semester	IV
Credits	2	L – T – P –TL*	1-0-2-3	TeachingHrs	42 50
Fotal Marks	100	CIE*	50	SEE*	
		*NOTE: L – Lecture; T –	, , , ,	·	
		CIE – Continuous Interna		ster End Examination	[
Course Learni	ng Objectives: Th	nis course will enable students t	.0;		
• To illustra	te the theoretical co	ncepts taught in Mechanical Meas	surements & Metrology throug	th experiments.	
		s measuring tools and measuring t			Teaching
		niques of various measuring devi	•		Hrs
List of Experime					
-					
PART-A:	MECHANICAL N	MEASUREMENTS			
1. Calibra	tion of Pressure Gau	Ige			
	tion of Thermocoup	0			
3. Calibra	tion of LVDT				
4. Calibrat	tion of Load cell				
5. Study o	f modulus of elastic	ity of a mild steel specimen using	strain gauges.(Activity)		
PART-B	: METROLOGY				
1. Measur	ements using Optica	al Projector / Toolmaker Microsco	ope.		
	U	g Sine Center / Sine bar / bevel pr	-		
	-	using Autocollimator / Roller set			
4. Measur	ement of cutting too	ol forces using a) Lathe tool Dynar	mometer OR b) Drill tool Dyn	amometer.	
5Measu	rements of Surface 1	oughness, Using Tally Surf/Mech	anical Comparator		
6. Measur	ement of gear tooth	profile using gear tooth Venire /G	lear tooth micrometer		

7. Calibration of Micrometer using slip gauges8. Study of various gear tooth profile using Optical Flats.(Activity)	
Study of Screw thread Parameters using two wire or Three-wire methods.(Activity)	
List of Experiment	
PART-A: MECHANICAL MEASUREMENTS	
6. Calibration of Pressure Gauge	
7. Calibration of Thermocouple	
8. Calibration of LVDT	
9. Calibration of Load cell	
10. Study of modulus of elasticity of a mild steel specimen using strain gauges.(Activity)	
PART-B: METROLOGY	
9. Measurements using Optical Projector / Toolmaker Microscope.	
10. Measurement of angle using Sine Center / Sine bar / bevel protractor	
11. Measurement of alignment using Autocollimator / Roller set	
12. Measurement of cutting tool forces using a) Lathe tool Dynamometer OR b) Drill tool Dynamometer.	
13Measurements of Surface roughness, Using Tally Surf/Mechanical Comparator	
14. Measurement of gear tooth profile using gear tooth Venire /Gear tooth micrometer	
15. Calibration of Micrometer using slip gauges	
16. Study of various gear tooth profile using Optical Flats.(Activity)	
17. Study of Screw thread Parameters using two wire or Three-wire methods.(Activity)	

Course outcomes: By the end of the course student shall be able to	
CO1: To calibrate pressure gauge, thermocouple, LVDT, load cell, micrometer.	
CO2: To measure angle using Sine Center/ Sine Bar/ Bevel Protractor, alignment using Autocollimator/ Roller set.	
CO3: To demonstrate measurements using Optical Projector/Tool maker microscope, Optical flats.	
C04 :To measure cutting tool forcesusing Lathe/Drill tool dynamometer.	
CO5 : To Study Screw thread parameters using 2-Wire or 3-Wire method and measure gear tooth profile using gear toothvernier /Gear tooth micrometer.	
Question paper pattern:	
• The question paper will have ten full questions carrying equal marks.	
• Each full question will be for 20 marks.	
• There will be two full questions (with a maximum of four sub- questions) from each module.	
• Each full question will have sub- question covering all the topics under a module.	
The students will have to answer five full questions, selecting one full question from each module. Scheme of	
Examination:	
ONE question from part -A: 30 Marks ONE	
question from part -B: 50 Marks Viva -Voice:	
20 Marks	
Total: 100 Marks (To be reduced to 50 Marks)	

Course Code	22MEL47	Course Title	MACHINE SHOP	Semester	IV	
Credits	2	$L - T - P - TL^*$	1 - 0 - 2 - 3	Teaching Hrs	42	
Total Marks	100	CIE*	50	SEE*	50	
		*NOTE: L – Lecture; T	F – Tutorial; P – Practical; T	L – Total;		
		CIE – Continuous Inter	rnal Evaluation; SEE – Seme	ster End Examination		
Course Learning	g Objectives: Thi	s course will enable stude	ents to;		Teaching Hr	
 To und To pro To lease Introduce List of Experimed Preparation of three Drilling, Boring, Interpretation						
Cutting of V Groov						
For demonstration cutter grinder. Den						
Course outcomes: By the end of the course the student shall be able to CO1: Identify the various operations required to prepare the model.CO2: Select the suitable machine for a particular operation. CO3: Prepare the specimen as per the given dimension for the given raw material. CO4: Demonstrate the measurement of cutting forces, thread parameters, gear parameters and angles of the component.CO5: Prepare the document based on the experiment/test conducted.						

Question paper pattern:

The students will have to answer ONE full questions, selecting one full question from each module.

Scheme of Examination:

ONE question from part -A: 30 MarksONE question from part -B: 50 Marks

Viva -Voice: 20 Marks Total: 100 Marks (To be reduced to 50 Marks)